8 research outputs found

    A Multi-Stage Classification Approach for IoT Intrusion Detection Based on Clustering with Oversampling

    Get PDF
    This research received no external funding. The APC is funded by Prince Sultan UniversityThe authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges (APC) of this publication.Intrusion detection of IoT-based data is a hot topic and has received a lot of interests from researchers and practitioners since the security of IoT networks is crucial. Both supervised and unsupervised learning methods are used for intrusion detection of IoT networks. This paper proposes an approach of three stages considering a clustering with reduction stage, an oversampling stage, and a classification by a Single Hidden Layer Feed-Forward Neural Network (SLFN) stage. The novelty of the paper resides in the technique of data reduction and data oversampling for generating useful and balanced training data and the hybrid consideration of the unsupervised and supervised methods for detecting the intrusion activities. The experiments were evaluated in terms of accuracy, precision, recall, and G-mean and divided into four steps: measuring the effect of the data reduction with clustering, the evaluation of the framework with basic classifiers, the effect of the oversampling technique, and a comparison with basic classifiers. The results show that SLFN classification technique and the choice of Support Vector Machine and Synthetic Minority Oversampling Technique (SVM-SMOTE) with a ratio of 0.9 and the k value of 3 for k-means++ clustering technique give better results than other values and other classification techniques.Prince Sultan Universit

    An Intelligent Hybrid Sentiment Analyzer for Personal Protective Medical Equipments Based on Word Embedding Technique: The COVID-19 Era

    Get PDF
    Due to the accelerated growth of symmetrical sentiment data across different platforms, experimenting with different sentiment analysis (SA) techniques allows for better decision-making and strategic planning for different sectors. Specifically, the emergence of COVID-19 has enriched the data of people’s opinions and feelings about medical products. In this paper, we analyze people’s sentiments about the products of a well-known e-commerce website named Alibaba.com. People’s sentiments are experimented with using a novel evolutionary approach by applying advanced pre-trained word embedding for word presentations and combining them with an evolutionary feature selection mechanism to classify these opinions into different levels of ratings. The proposed approach is based on harmony search algorithm and different classification techniques including random forest, k-nearest neighbor, AdaBoost, bagging, SVM, and REPtree to achieve competitive results with the least possible features. The experiments are conducted on five different datasets including medical gloves, hand sanitizer, medical oxygen, face masks, and a combination of all these datasets. The results show that the harmony search algorithm successfully reduced the number of features by 94.25%, 89.5%, 89.25%, 92.5%, and 84.25% for the medical glove, hand sanitizer, medical oxygen, face masks, and whole datasets, respectively, while keeping a competitive performance in terms of accuracy and root mean square error (RMSE) for the classification techniques and decreasing the computational time required for classification

    An Object Classification Approach for Autonomous Vehicles Using Machine Learning Techniques

    No full text
    An intelligent, accurate, and powerful object detection system is required for automated driving systems to keep these vehicles aware of their surrounding objects. Thus, vehicles adapt their speed and operations to avoid crashing with the existing objects and follow the driving rules around the existence of emergency vehicles and installed traffic signs. The objects considered in this work are summarized by regular vehicles, big trucks, emergency vehicles, pedestrians, bicycles, traffic lights, and traffic signs on the roadside. Autonomous vehicles are equipped with high-quality sensors and cameras, LiDAR, radars, and GPS tracking systems that help to detect existing objects, identify them, and determine their exact locations. However, these tools are costly and require regular maintenance. This work aims to develop an intelligent object classification mechanism for autonomous vehicles. The proposed mechanism uses machine learning technology to predict the existence of investigated objects over the road network early. We use different datasets to evaluate the performance of the proposed mechanism. Accuracy, Precision, F1-Score, G-Mean, and Recall are the measures considered in the experiments. Moreover, the proposed object classification mechanism is compared to other selected previous techniques in this field. The results show that grouping the dataset based on their mobility nature before applying the classification task improved the results for most of the algorithms, especially for vehicle detection

    An Object Classification Approach for Autonomous Vehicles Using Machine Learning Techniques

    No full text
    An intelligent, accurate, and powerful object detection system is required for automated driving systems to keep these vehicles aware of their surrounding objects. Thus, vehicles adapt their speed and operations to avoid crashing with the existing objects and follow the driving rules around the existence of emergency vehicles and installed traffic signs. The objects considered in this work are summarized by regular vehicles, big trucks, emergency vehicles, pedestrians, bicycles, traffic lights, and traffic signs on the roadside. Autonomous vehicles are equipped with high-quality sensors and cameras, LiDAR, radars, and GPS tracking systems that help to detect existing objects, identify them, and determine their exact locations. However, these tools are costly and require regular maintenance. This work aims to develop an intelligent object classification mechanism for autonomous vehicles. The proposed mechanism uses machine learning technology to predict the existence of investigated objects over the road network early. We use different datasets to evaluate the performance of the proposed mechanism. Accuracy, Precision, F1-Score, G-Mean, and Recall are the measures considered in the experiments. Moreover, the proposed object classification mechanism is compared to other selected previous techniques in this field. The results show that grouping the dataset based on their mobility nature before applying the classification task improved the results for most of the algorithms, especially for vehicle detection

    An Evolutionary-Based Sentiment Analysis Approach for Enhancing Government Decisions during COVID-19 Pandemic: The Case of Jordan

    Get PDF
    The world has witnessed recently a global outbreak of coronavirus disease (COVID-19). This pandemic has affected many countries and has resulted in worldwide health concerns, thus governments are attempting to reduce its spread and impact on different aspects of life such as health, economics, education, and politics by making emergent decisions and policies (e.g., lockdown and social distancing). These new regulations influenced people’s daily life and cast significant burdens, concerns, and disparities on various population groups. Taking the wrong actions and enforcing bad decisions by some countries result in increasing the contagion rate and more catastrophic results. People start to post their opinions and feelings about their government’s decisions on different social media networks, and the data received through these platforms present a very useful source of information that affects how governments perceive and cope with the current the pandemic. Jordan was one of the top affected countries. In this paper, we proposed a decision support system based on the sentiment analysis mechanism by combining support vector machines with a whale optimization algorithm for automatically tuning the hyperparameters and performing feature weighting. The work is based on a hybrid evolutionary approach that aims to perform sentiment analysis combined with a decision support system to study people’s posts on Facebook to investigate their attitudes and feelings toward the government’s decisions during the pandemic. The government regulations were divided into two periods: the first and latter regulations. Studying public sentiments during these periods allows decision-makers in the government to sense people’s feelings, alert them in case of possible threats, and help in making proactive actions if needed to better handle the current pandemic situation. Five different versions were generated for each of the two collected datasets. The results demonstrate the superiority of the proposedWhale Optimization Algorithm & Support Vector Machines (WOA-SVM) against other metaheuristic algorithms and standard classification models as WOA-SVM has achieved 78.78% in terms of accuracy and 84.64% in term of f-measure, while other standard classification models such as NB, k-NN, J84, and SVMachieved an accuracy of 69.25%, 69.78%, 70.17%, and 69.29%, respectively, with 64.15%, 62.90%, 60.51%, and 59.09% F-measure. Moreover, when comparing our proposedWOA-SVMapproachwith othermetaheuristic algorithms,which are GA-SVM, PSO-SVM, and MVO-SVM, WOA-SVM proved to outperform the other approaches with results of 78.78% in terms of accuracy and 84.64% in terms of F-measure. Further, we investigate and analyze the most relevant features and their effect to improve the decision support system of government decisions

    A Multi-Layer Classification Approach for Intrusion Detection in IoT Networks Based on Deep Learning

    No full text
    The security of IoT networks is an important concern to researchers and business owners, which is taken into careful consideration due to its direct impact on the availability of the services offered by IoT devices and the privacy of the users connected with the network. An intrusion detection system ensures the security of the network and detects malicious activities attacking the network. In this study, a deep multi-layer classification approach for intrusion detection is proposed combining two stages of detection of the existence of an intrusion and the type of intrusion, along with an oversampling technique to ensure better quality of the classification results. Extensive experiments are made for different settings of the first stage and the second stage in addition to two different strategies for the oversampling technique. The experiments show that the best settings of the proposed approach include oversampling by the intrusion type identification label (ITI), 150 neurons for the Single-hidden Layer Feed-forward Neural Network (SLFN), and 2 layers and 150 neurons for LSTM. The results are compared to well-known classification techniques, which shows that the proposed technique outperforms the others in terms of the G-mean having the value of 78% compared to 75% for KNN and less than 50% for the other techniques

    An Enhanced Evaporation Rate Water-Cycle Algorithm for Global Optimization

    No full text
    Water-cycle algorithm based on evaporation rate (ErWCA) is a powerful enhanced version of the water-cycle algorithm (WCA) metaheuristics algorithm. ErWCA, like other algorithms, may still fall in the sub-optimal region and have a slow convergence, especially in high-dimensional tasks problems. This paper suggests an enhanced ErWCA (EErWCA) version, which embeds local escaping operator (LEO) as an internal operator in the updating process. ErWCA also uses a control-randomization operator. To verify this version, a comparison between EErWCA and other algorithms, namely, classical ErWCA, water cycle algorithm (WCA), butterfly optimization algorithm (BOA), bird swarm algorithm (BSA), crow search algorithm (CSA), grasshopper optimization algorithm (GOA), Harris Hawks Optimization (HHO), whale optimization algorithm (WOA), dandelion optimizer (DO) and fire hawks optimization (FHO) using IEEE CEC 2017, was performed. The experimental and analytical results show the adequate performance of the proposed algorithm

    A multi-strategy enhanced African vultures optimization algorithm for global optimization problems

    No full text
    The African vultures optimization algorithm (AVOA) is a recently proposed metaheuristic inspired by the African vultures behaviors. Though the basic AVOA performs very well for most optimization problems, it still suffers from the shortcomings of slow convergence rate and local optimal stagnation when solving complex optimization tasks. Therefore, this study introduces a modified version named enhanced AVOA (EAVOA). The proposed EAVOA uses three different techniques namely representative vulture selection strategy, rotating flight strategy, and selecting accumulation mechanism, respectively, which are developed based on the basic AVOA. The representative vulture selection strategy strikes a good balance between global and local searches. The rotating flight strategy and selecting accumulation mechanism are utilized to improve the quality of the solution. The performance of EAVOA is validated on 23 classical benchmark functions with various types and dimensions and compared to those of nine other state-of-the-art methods according to numerical results and convergence curves. In addition, three real-world engineering design optimization problems are adopted to evaluate the practical applicability of EAVOA. Furthermore, EAVOA has been applied to classify multi-layer perception using XOR and cancer datasets. The experimental results clearly show that the EAVOA has superiority over other methods.Funding Agencies|Fujian Key Lab of Agriculture IoT Application and IoT Application Engineering Research Center of Fujian Province Colleges and Universities; Fujian Provincial Natural Science Foundation Project [2022J011179, 2021J011128]; Sanming University National Natural Science Foundation of China Breeding Project [PYT2103]; Sanming University introduces high-level talents to start scientific research funding support project [21YG01]; Fujian Key Lab of Agriculture IoT Application and IoT Application Engineering Research Center of Fujian Province Colleges and Universities</p
    corecore